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LEnER TO THE EDITOR 

Statistics of nested spiral self-avoiding loops: exact results on 
the square and triangular lattices 

Loi'c Turban 
Laboratoire de Physique du Solidet, UniversitP de Nancy I ,  BP239, F-54506 Vandewre 
16s Nancy Cedex. France 

Received 3 April 1991 

Abstract. The statistics of nested spiral self-avoiding loops, which is closely related to the 
partition of integers into decreasing parts. has been studied on the square and triangular 
lattices. The number of configurations with N steps is cN = (fi/24)N-'/'exp(rr4 NI1') 
and their average size XN=(1/2a)G N'l'In N to leading order an the square lattice 
while the corresponding values for the triangular lattice are c N =  
( 3 3 1 4 / 1 6 ) N - ~ / 4 ~ ~ p ( ( ~ / & )  N"') and X N = l / ( r r & )  N'l'In N. 

Some years ago, the number of N-step spiral self-avoiding loops have been calculated 
for the square and triangular lattices (Manna 1985, Lin et a/ 1986). These works 
followed the introduction of the spiral self-avoiding walk (Privman 1983) for which a 
lot of exact results were obtained by a succession of authors (Blote and Hilhorst 
1984, Whittington 1984, Guttmann and Wormald 1984, Joyce 1984, Guttmann and 
Hirschhorn 1984, Lin 1985, Joyce and Brak 1985, Lin and Liu 1986). While the number 
of spiral self-avoiding loops grows with N like a non-universal, i.e. lattice-dependent 
power, the number of spiral self-avoiding walks also behaves in an unusual way 

cN =AN-@exp(hN"') (1) 

where both 0 and A are lattice-dependent quantities. It follows that the asymptotic 
entropy per step decays as N-''2 instead of giving a constant as in the ordinary or 
directed self-avoiding walks. Following the work of Privman, a close connection 
between this problem and the theory of partitions of integers (Andrews 1976) was 

In this letter we present some exact results concerning the statistics of nested spiral 
loops which are self- and mutually avoiding and piled up around a site chosen as the 
origin. We study such spirals on the square lattice where on a loop only 90" turns in 
the same direction are allowed so that the loops are rectangular-shaped (figure 1) and 
on the triangular lattice where the restriction to 120" turns leads to triangles among 
which one only keeps those pointing up (figure 2). 

--.:,,-A ,n-..-:>" -..A \,"A", ,O*" DnA..-- ""A A- 1"Q" vt-:.. ". ̂I  10P", 
,,"L,L..ci" ,vsr,run call" I.LI"(II 17"_., I .C"II~L nu" YC n,Lan,g=,,> 170.., Rl.zilll 5 1  " I  "OV, .  

Let us introduce the generating function 

GL(z,  o)= c N ( L ,  X ) z N  eyx (2) 
N,X 

t Unite de Recherche associee au CNRS no 155. 

0305-4470/91/181119+06$03.50 @ 1991 IOP Publishing Ltd L1119 



L1120 Letter to the Editor 

3 .  

I Y L  

I YL., 

I !  

Figure 1. Nested spiral self-avoiding loops on the square lattice: with 90" turns in the same 
direction, rectangular-shaped loops are obtained. Each step is assigned a weight i and the 
size is X = B t ,  X,. The nested-loop configuration corresponds to four independent 
partitions of integers into decreasing parts numbered 1 to 4 and each partition i s  duplicated 
(heavy lines). 

\ I  

Figure 2. Nested spiral self-avoiding loops on the triangular lattice: with 120' turns in the 
Same direction, triangular-shaped loops are obtained. Each step is assigned a weight z and 
the size is X = Xk-, X, .  The nested-loop configuration corresponds to three independent 
partitions of integers into decreasing parts numbered 1 to 3 and each panition is triplicated 
(heavy liner) 

for the number of configurations with N steps, L loops and size X =X:=, X ,  where 
X is the distance from the origin to the Lth loop. On the square lattice, with the 
notation of figure 1 ,  one may write 
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and the generating function may be factorized as 

3: 

In the same way, on the triangular lattice with the notation of figure 2, one has: 

GL(z,o)= 1 1 (XI-Xt-1) 1 E (X,-xI--Xz-l) 
m x,-2 x2-x - 2  

r , = 3  x,=l x>=x,+3 X>', 

m l,.-xL.,-2 

. . .  z (xL-xL-I-xL-l)z'z:-'I* e"&x' (8) 
rL=XL.,+3 xL=l 

so that using (4a):  

G';(z, U ) =  [ ""' 
k = l  m*=3 

and finally 

These results may be obtained more directly by noticing the connection with the 
number of partitions of integers into L decreasing parts which is illustrated in 
figure 1, for the square lattice and figure 2 for the triangular lattice. Nested loops 
configurations are in one-to-one correspondence with four independent partitions in 
the first case and three independent partitions in the second case. The generating 
functions for the nested-loop problem are directly obtained as powers of the generating 
function for the partition of integers into L decreasing parts (Andrews 1976): 

gL( l )= ( l+  I > +  I ] + .  . .)(f2+14+ l e + .  . .). . . ( r L +  ? L +  P+. . .) 

mu!tip!led hy a mndified generatl.g f!!.ctian fer which B pad:i3n 3f size x is, as iii 

g L ( f ,  w ) = ( t  ey + t 2  e20+. . .)(i2 ey+  r4e2'"+. . .) . . . ( iL e"+ r 2 L  e2-+, , .) 

(3) and (a), weighted by ewx so that 



L1122 Letter to the Editor 

One may verify that the mapping requires f = z2 for loops on the square lattice 
(figure 1) and f = z3 on the triangular lattice (figure 2); it follows that 

(13) 

with p =4, q = 2, on the square lattice and p = 3, q = 3, on the triangular lattice in 
agreement with (7) and (10). 

Let us first consider the generating function G(t) for the number of configurations 
cN c N ( L ,  X) with N steps and any number of loops which is given by 

GL(4 0 )  = tgL(t)lP-'gL(f, W)l,=,', 

m on 
G ( f ) =  2 G L ( f , W ) I 4 =  1 [gL(f ) l~ l l=r" .  (14) 

The behaviour of cN for large N values is governed by the behaviour of g L ( f )  in the 
vicinity oi its singuiarity at I = i. with = i - 11 ana 11 +aA, the main contribution to  
the sum in (14) comes from values of L near Lo= In 2/11 for which gL(q) is maximum 
in L (Blote and Hilhorst 1984, des Cloizeaux and Jannink 1987) and an expansion of 
In g L ( q )  near Lo (see the appendix) leads to 

L=l L-I  

so that the sum over L in G( f) may be transformed into a Gaussian integral and one 
gets 

m ( P - l v z  

G ( f ) =  '=, 1 e ~ p [ p I n g ~ ( r ) ] = ( 2 p ) ~ ~ " ( ~ )  e x p ( 6 )  (16) 

for the ieading contribution. With n = iv'jq, ihe generating function may be wriiien as  

G ( f ) =  1 C,=,.f" (17) 
m 

" = O  

so that the number of configurations is given by the Cauchy formula 

where (C)  is a circle of radius r < 1 centred at the origin. The integral may be evaluated 
using the saddle-point method by deforming the contour. Through a Gaussian integra- 
tion near the saddle-point at f = l - ~ r ( p / l 2 q ) " ~  one gets 

to leading order. With the appropriate p and q values one gets 

For both lattices, the exponential term is the same as for the outward spiral self-avoiding 
walk (Blote and Hilhorst 1984, Joyce 1984, Guttmann and Wormald 1984, Joyce and 
n- -L  *oQc 1 :- - -A 1 :.. IOQLI ..!hmmnr rhp  nnm-r nf in thr nrdnrtnr  ir different 
"La,. 170,. U,,. ',,.U b," "Y", n.,r,-._a ,L.* y""-. -. ... ...- r.-.I-.". .I -...--- .... 
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According to (2), the mean size for L-loop configurations is given by 

J In GL( I, W )  L 1  = E 7  (21) 
JW ,,,-o k - 3 1 - f  

XL(t) = 

and may be rewritten as 

r k ( l - r L k )  
xL(o= 1 . .k (22) 

k = O  1--I 

where the first term in the sum should be understood as the limit of the ratio when 
k + 0. When L is unrestricted, the mean size becomes 

(23) 

Changing the sum over L into an integral, the value Lv= In 211) corresponding to the 
maximum in L of GL(r) is selected and 

Z?=, G L ( t ) X L ( t ) -  t k  X?=l GL( t ) ( l - tLk )  

G(1) x( f )=  - 1 7  G(t) k = V l - ?  

P ( l - 2 - k )  

1 (24) 
k - 0  1 - f '  ' 

Putting apart the first term and rearranging the sum, one gets 

The sum may be evaluated using the Euler-Maclaurin formula and 

to leading order. On the other hand the number of steps reads 

so that 

and 

One recovers the characteristic behaviour of the spiral self-avoiding walk (Blote and 
Hilhorst 1984, Liu and Lin 1985) with an exponent Y =$ and a logarithmic correction. 

Appendix 

Using (1  1) with I = 1 - 1) in the liliiit 1) +Of  one has 

I n g L ( t ) = -  1 I n ( I C - l ) = -  1 [In(ek"-I)-lnkq]- 
L L L 

k = I  k = I  k - l  
Inkv. 
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The first sum may be replaced by an integral using 

Integrating the second term and using Stirling's formula, one gets to leading order 

Expanding the remaining integral, considered as a function of its upper limit, near 
uo= Lo? = I n 2  with 

7r2 
In(e" - 1) du = -- (A5) l2 12 

one iinaiiy gets 
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